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a  b  s  t  r  a  c  t

Linking  decadal  variability  with short-term  variability  could  be  potentially  exploited  for  improving  sea-
sonal  climate  forecasting  for assisting  crop  management  decisions.  The  objective  of  this  study  was  to
explore  whether  there  are  decadal  variations  in  wheat  (winter  crop)  and  maize  (summer  crop)  produc-
tion  and  whether  these  decadal  variations  correlate  with  any  known  variations  of climate.  Over one
hundred  years  of  wheat  and  maize  yields  were  simulated  using  process-based  crop  models  with dynam-
ically  downscaled  daily  reanalysis  data  over  four locations  in  the  southeast  USA.  Using  wavelet  and
cross-wavelet  analysis,  we  found  that  winter  crop  yields  were  dominated  by 10-  and  22-year  decadal
oscillations;  the  decadal  variations  of winter  crop yields  were  driven  by  decadal  variations  of  winter
tlantic Multi-decadal Oscillation
acific Decadal
scillation
orth Atlantic Oscillation

temperature  and  spring  precipitation;  no  decadal  variations  were  detected  for  summer  crop  yields  and
summer  precipitation  and  temperature.  Cross-wavelet  analysis  showed  that  the decadal  variations  of
winter  crop  yields  were  correlated  with  indices  of  the  annual  Atlantic  Multi-decadal  Oscillation  (AMO),
the  annual  Pacific  Decadal  Oscillation  (PDO),  and the  winter  North  Atlantic  Oscillation  (NAO).  Therefore,
this  knowledge  of decadal  climate  variability  could  potentially  be leveraged  to  predict  winter  seasonal
yields  of  crops.
. Introduction

Climate factors have a major influence on crop production
Hoogenboom, 2000). Variability of climate from one year to
nother poses risks on decision-making of crop management. For
xample, higher or lower than normal precipitation (drier or wetter
eason type) can cause damages or bring benefits to farmers. If these
limate conditions can be forecasted in advance, decision-makers
an benefit from using this information to change their strategies
o adapt to the upcoming season type. For example, a forecast of the

eason type (e.g., wet or dry) before the start of the season could
otentially be used to adjust crop management strategies to save

nput costs in dry seasons and to increase inputs in wet seasons to
et higher achievable yields (Asseng et al., 2012a,b).

∗ Corresponding author at: E312 Engineering Quadrangle, 59 Olden Street, Prince-
on, NJ, 08544, USA. Tel.: +1 609 258 5334.

E-mail address: dtian@princeton.edu (D. Tian).

ttp://dx.doi.org/10.1016/j.agrformet.2015.01.013
168-1923/© 2015 Elsevier B.V. All rights reserved.
© 2015  Elsevier  B.V.  All  rights  reserved.

Teleconnections refer to statistical associations among differ-
ent climatic variables among large distances. Recent studies have
focused on using the teleconnection of large-scale climate patterns
with local climate to improve seasonal crop management (e.g.,
Bannayan et al., 2010; Brown, 2013; Jarlan et al., 2013; Maxwell
et al., 2013; Royce et al., 2011; Vizard and Anderson, 2009). In
the southeast USA, agricultural yields have found to be influenced
by the El Niño South Oscillation (ENSO) (e.g., Hansen et al., 1998,
1999; Royce et al., 2011), as well as other large-scale climate
indices including Pacific/North American teleconnection pattern,
tropical North Atlantic and eastern tropical Pacific sea surface tem-
perature (SST), and Bermuda high indices (Martinez et al., 2009;
Martinez and Jones, 2011). However, most of these studies were
based on correlation or regression approaches that assumed the
teleconnection relationships did not change through time, but the

variability of large-scale climate patterns are often non-stationary
processes (e.g., Coulibaly and Burn, 2004) and their relationships
with crop yields may  change over time. Besides using observed
climate teleconnections, GCM-based seasonal forecast tools have
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Fig. 1. Study locations in th

lso been used to improve crop management systems in different
egions (e.g., Asseng et al., 2012a,b; Baigorria et al., 2010, 2008a,b;
antelaube and Terres, 2005). However, since the skills of GCMs
ere still marginal, any crop management improvements from this

trategy are limited by the forecast skill of a GCM.
Decadal climate variability information can be potentially com-

ined with the information of short-term climate variability and
CM-based forecasts to further improve seasonal forecasting for
rop management. To make use of decadal climate information, the
rerequisite step is to know whether there are decadal variations

n historical crop production and whether these decadal variations
orrelate with any known variations of climate. Crop yield and cli-
ate data over multiple decades or even a century can be used to

nvestigate the impact of decadal climate on crop yields. Since vari-
tion in crop yields is driven by numerous factors not only including
uctuations of climate but also agronomic management (e.g., sow-

ng date, cultivar choice, fertilizer amount, plant density), in this
tudy, dynamic crop simulation models (CSMs) were used as a tool
o study the response of crop yields to climate variations by keep-
ng all other factors constant over time. CSMs allow simulating the
rowth and development of crops beyond a single experimental

ite, and thus can be used to conduct regional climate impact stud-
es. Climatic inputs such as daily precipitation, temperature, and
olar radiation are particularly important for CSMs to simulate crop
rowth and development (van Ittersum et al., 2003). Since com-
lete sets of these observed weather variables are difficult to obtain
ates of the Southeast USA.

over a period of multiple decades at a regional scale, reanalysis
data, which provides a temporally and spatially consistent rep-
resentation of the observed weather, can be used as a surrogate
for inputs into CSMs (e.g., Cammarano et al., 2013; Challinor et al.,
2005).

This study is aimed to assess the decadal variability of crop yields
and the possible links to dominant climatic patterns. Most previous
assessment studies were based on correlation- or regression-based
analysis between crop yields and the teleconnection pattern indices
by assuming stationary time series. However, wavelet analysis
has revealed that climatic patterns are non-stationary processes,
since their variance, frequency, and duration changes through
time (Grinsted et al., 2004; Torrence and Compo, 1998). The time
series of climate-driven simulated crop production may also exhibit
non-stationarity. Therefore, using wavelet analysis as opposed to
traditional stationary approaches can capture the intermittent fea-
tures of the relationship between time series of simulated crop
production and climate factors and can enhance the understand-
ing and potential predictability of crop yields. While in recent years,
wavelet analysis has been widely used in detecting non-stationary
features and correlations in geophysical time series such as cli-

mate and hydrology (e.g., Carey et al., 2013; Liang et al., 2010),
this method has not yet been used in assessing the impact of cli-
mate variability on crop yields. To the authors’ knowledge, this
study is the first to introduce wavelet methods to climate impact
assessment of crop production.
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Table 2
Study locations and crop management.

Locations Wheat sowing Maize sowing Latitude Longitude

Belle Mina, AL (N-AL) 15-October 15-April 34.41 −86.53
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D. Tian et al. / Agricultural and

Wheat (winter crop) and maize (summer crop) are two of the
ost important crops in the world. The main objectives of this study
ere to explore possible decadal variations and their drivers for
heat and maize production in the southeast USA using wavelet
ethods. CSMs driven by reanalysis data were used to simulate

rend-free crop production in multi-decadal time scales. Wavelet
nalysis methods were then applied to analyze the climate driven
rop productions and their relationships to climate patterns.

. Materials and methods

.1. Reanalysis dataset

Reanalysis data used in this study was from the Florida Cli-
ate Institute-Florida State University Land–Atmosphere Reanal-

sis data set for the southeastern United States at 10-
m resolution version 1.0 (FLAReS1.0, http://coaps.fsu.edu/pub/
outheast/FLAReS1.0/daily/) (DiNapoli and Misra, 2012; Misra
t al., 2013). DiNapoli and Misra (2012) and Misra et al. (2013)
oted that local climate variability and its teleconnections with

arge-scale climate patterns are well-represented by FLAReS1.0 on
easonal, interannual, and decadal time scales, which made it suit-
ble for local climate impact studies. FLAReS1.0 was dynamically
ownscaled from the 20th Century Reanalysis (Compo et al., 2011)
sing the Regional Spectral Model. It archived 106 years of pre-
ipitation, solar radiation, mean temperature, and maximum and
inimum temperature data in daily time steps from 1903 to 2008.

hese daily weather variables were used as inputs into CSMs to sim-
late crop production and allowed for the examination of decadal
cale variations of crop production in the southeast USA.

.2. Crop simulations

Crop simulations were performed using the DSSAT 4.5
Hoogenboom et al., 2010; Jones et al., 2003) CERES-maize model

Jones et al., 1986) and the APSIM-Nwheat model version 1.55s
Asseng, 2004). The winter wheat cultivar Baldwin and a mid-
eason maize hybrid were used in this study because these two
ultivars are representative for wheat and maize grown in the
outheast USA. The models were calibrated and evaluated using

able 1
enetic coefficients used to describe a mid-season maize hybrid for DSSAT crop model and

Maize genetic parameters

P1 P2 P5 G2 

GDD – GDD # per plan
Mid-cycle 300 0.3 990 795 

Wheat genetic parameters
P1V P1D P5 Grno 

–  – GDD Kernel g−1

Baldwin 3.1 4.2 750 25.7 

aize coefficients
1: Thermal time from seedling emergence to the end of the juvenile phase (expressed
esponsive to changes in photoperiod.
2:  Extent to which development (expressed as days) is delayed for each hour increase i
aximum rate (which is considered to be 12.5 hours).

5:  Thermal time from silking to physiological maturity (expressed in degree days above
2:  Taximum possible number of kernels per plant.
3:  Kernel filling rate during the linear grain filling stage and under optimum conditions
HINT:  Phylochron interval; the interval in thermal time (degree days) between successi
heat coefficients

1 V: Sensitivity to vernalization.
1D: Sensitivity to photoperiod.
5:  Thermal time from start of grain filling to maturity.
rno: Coefficient of kernel number per stem weight at the beginning of grain filling.
illrate:  Maximum kernel growth rate.
tmwt:  Potential final dry weight of a single stem (excluding grain).
hylo:  Phyllocron interval.
Wiregrass, AL (S-AL) 29-October 20-March 31.22 −85.18
Tifton, GA (S-GA) 15-November 20-March 31.43 −83.58
Panhandle Region, FL (N-FL) 30-November 20-March 30.27 −83.31

trail data from three locations in Alabama for wheat cultivar
Baldwin (from 2009 to 2011) [Tennessee Valley Research and
Extension Center at Limestone County located in Belle Mina,
northern Alabama (34◦41′N, 86◦53′W),  Wiregrass Research and
Extension Center at Henry County Headland, southern Alabama
(31◦22′N, 85◦18′W),  and E.V. Smith Research and Extension Center
at Macon County, Shorter, Central Alabama (32◦25′N, 85◦53′W)],
and Tifton in Georgia (31◦71′N, 83◦34′W)  for a mid-season maize
hybrid (from 1997 to 2008). The mid-season maize hybrid was sim-
ulated for the mean yield and mean life cycle across a set of about
20 or more maize hybrids for a given season using Tifton, Georgia
variety trials. So the maize cultivar used in this study is a compos-
ite representative hybrid. The root mean square error (RMSE) for
calibration and validation was 1.89 t ha−1 for maize and 0.74 t ha−1

for wheat. The calibrated genetic coefficients are shown in Table 1.
We assume that the same cultivars are applicable for the region,

including northern Florida, Alabama and Georgia. Four representa-
tive locations were selected for maize and wheat model simulations
(Table 2 and Fig. 1) using the calibrated cultivars (Table 1). An
important implication of using the same cultivar across the region is
that the findings are due differences in climate as the main subject
and not influenced by different cultivars.

A soil with a high water-holding capacity (silty–clay soil) was
used for four locations in the southeast USA after Cammarano et al.
(2013) because this type of soil is representative for an average soil
for the southeast USA. Both maize and wheat models were simu-
lated with a rainfed (non-irrigated) scheme and with no nitrogen

(N) stress by switching N limitations off (DSSAT) and supplying
plenty of N fertilizer (APSIM-N wheat). The planting density was 6
and 350 plants m−2 for maize and wheat, respectively. We  initial-
ized the crop models with soil water content at 50% above the lower

 the wheat cultivar Baldwin for the N-wheat model (from Cammarano et al., 2013).

G3 PHINT

t mg  d−1 GDD
8.1 39

Fillrate Stmwt Phylo
stem−1 mg  kernel−1 day−1 g stem−1 GDD

2.2 3 123

 in degree days above a base temperature of 8 ◦C) during which the plant is not

n photoperiod above the longest photoperiod at which development proceeds at a

 a base temperature of 8 ◦C).

 (mg day−1).
ve leaf tip appearances.
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Fig. 2. Wavelet power spectrum for wheat yields from 1903 to 2008 at four locations in the southeast USA: (a) N-AL, (b) S-AL, (c) S-GA, and (d) N-FL. Yellow to orange to red
color  pixels represent increasing wavelet power spectrum, blue colors show a low wavelet power spectrum. The black contour (surrounding red and orange areas) designates
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he  5% significance level against “red noise”. Inside the black cone shape contour is 

nfluence (COI) – which is due to the finite length of the time series where the edge
olor  in this figure legend, the reader is referred to the web  version of this article].

imit (also called the permanent wilting point) three months before
he planting date in order to take account into pre-sowing rain-
all. This initial soil water content was reset in the models before
lanting to avoid any variability in water carry-over effects. Har-
est for both crops occurred automatically at maturity. The crop
rowing seasons were different for maize and wheat at the differ-
nt locations. The planting dates in these simulations were chosen
s average “usual planting dates” (Table 2), which are most “repre-
entative” planting dates for these four locations (Cammarano et al.,
013). Following Cammarano et al. (2013), we define the grow-

ng season for summer maize from March to July and for winter
heat from October to May. A wheat growing season was across

wo years (for example when sown in Fall 1979, it was harvested
n Spring 1980) and a maize crop was sown and harvested in the
ame year. Since the wheat growing season was across two  years,
heat production was simulated for 105 years, starting from Fall

903. Maize production was simulated for 106 years, starting from
pring 1903.

.3. Selected climate indices
This study included three large-scale climate patterns that have
hown impacts on the regional climate of the southeast USA.
hese selected indices were the annual mean Atlantic Multidecadal
scillation (AMO) index, annual mean Pacific Decadal Oscillation
gion without an edge effect. Outside the black cone contour is the region of cone of
ts become important and distort the results[For interpretation of the references to

(PDO) index, and winter (December thru March) index of the
annual North Atlantic Oscillation (NAO). These indices have been
found to be the predominant patterns for displaying variability
of decadal timescales and have impacts on the regional cli-
mate in the southeast USA (Enfield et al., 2001; McCabe et al.,
2004; Seager et al., 2010). The AMO  was defined as the leading
mode of detrended North Atlantic Ocean Sea Surface Temper-
atures (SSTs; Enfield et al., 2001) and was  obtained from the
Physical Sciences Division of the Earth Systems Research Labo-
ratory (http://www.esrl.noaa.gov/psd/data/timeseries/AMO/). The
annual mean AMO  index was calculated as the average of the
unsmoothed monthly AMO  index for each year. The PDO was
defined as the first principal component of SST anomalies in the
North Pacific Ocean (poleward of 20◦N) after the global mean
SST anomalies has been removed (Mantua et al., 1997). The
monthly PDO index was obtained from the Joint Institute for
the study of Atmosphere and Ocean at the University of Wash-
ington (http://jisao.washington.edu/pdo/PDO.latest). The annual
mean PDO index was the average of the monthly PDO index for
each year. The winter index of the NAO used in this study was based

on the difference of normalized sea level pressure between Lisbon,
Portugal and Stykkisholmur/Reykjavik, Iceland and was obtained
from the Climate Analysis Section of the National Center for Atmo-
spheric Research (Hurrell and National Center for Atmospheric
Research Staff, 2014).
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Fig. 3. As in Fig. 

.4. Wavelet method

The continuous wavelet transformation (CWT) was used to
etect intermittent periods of a time series. The cross wavelet
ransformation (XWT) was applied to detect localized relation-
hips between two time series (weather variables and simulated
rop productions, or climate indices and simulated crop produc-
ions). The following is a brief summary of CWT  and XWT  relevant
o this study. For a more detailed description of CWT  and XWT
ee Torrence and Compo (1998) and Grinsted et al. (2004). The
WT  decomposes a time series from the time domain to the time-

requency (or time-period) domain. The CWT  of a discrete sequence
n is defined as the convolution of xn with a scaled and translated
ersion of  o(h):

n(s) =
N−1∑
n′=0

xn′ ∗
[

(n′ − n)ıt
s

]
(1)

here n is the localized time index, s is the scale, ıt is the sam-
ling period, N is the number of points in the time series, and the
*) indicates the complex conjugate. The wavelet power spectrum
s defined as |Wn(s)|2. Large wavelet power indicates dominant
eriod.  o(h) is the wavelet function (or mother wavelet). The

orlet wavelet function was used in this research and is written

s:

0(�) = �−1/4eiω0�e−�
2/2 (2)
for maize yields.

where � is the nondimensional time factor, ωo is the nondimen-
sional frequency. The global wavelet spectrum is calculated as:

W̄2(s) = 1
N

N−1∑
n=0

∣∣Wn(s)
∣∣2

(3)

The XWT  was used to examine whether regions in time-
frequency space with large common power have a consistent phase
relationship (Grinsted et al., 2004). The XWT  of two time series xn
and yn is defined as WXY = WXWY∗, where (*) denotes complex con-
jugate. The cross wavelet power is defined as |WXY|. The complex
argument arg(WXY) can be interpreted as the local relative phase
between xn and yn in the time frequency space.

The cone of influence (COI) is the region of the wavelet or cross-
wavelet spectrum in which edge effects become important and
distort the results. The statistical significance (95%) of the wavelet
and cross-wavelet power spectrums was assessed relative to the
null hypothesis that the time series was generated as red noise
(Torrence and Compo, 1998).

3. Results

3.1. CWT  of wheat and maize yields
CWT  of simulated annual wheat and maize yields are shown
in Figs. 2 and 3, respectively. The wheat yield oscillations were
dominated by decadal variability of 10- and 22-year periods and
a short-term 4 year variability (i.e., orange to red areas, statistically
significant when circled with black line) at four locations (N-AL,
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Fig. 4. Time series plot of wheat yields from 1903 to 2008 at four locations (a) N-AL,
(b)  S-AL, (c) S-GA, and (d) N-FL in the southeast USA. Black line, red full line, and
 D. Tian et al. / Agricultural and

-AL, S-GA, and N-FL) in the southeast USA. The wavelet power
pectrums of wheat yields were high from the 1960s to 1980s for a
0-year period and from the 1930s to 1980s for a 22-year period. It

s worthwhile to note that the significance regions around 10 and
2 year periods were different for all 4 sites. N-AL and S-AL had
he greatest 5% significance regions around 10 and 22 year periods
nd showed the strongest occurrence of decadal variations. While
-FL and S-GA had high wavelet power spectrums around 10 and
2 year periods, they had very small or no 5% significance regions
ompared to the N-AL and S-AL. This difference implicates that the
estern region had stronger decadal climate variations than in the

astern region of the southeast USA and the strongest decadal cli-
ate variations occurred in the northwestern region of this study

rea and therefore, drove the decadal variations of simulated wheat
ields. The maize yield oscillations were dominated by short-term
-year periods but no decadal variations were found. Fig. 4 is the
1-year and 5-year moving average of the time series of wheat
ields after standardization by subtracting the mean and dividing
he standard deviation at four locations in the southeast USA. The
2-year period (and 10-year period) oscillations are clearly seen
uring the 1930–1980s (and the 1960–1980s), which confirms the
ndings of CWT  in Fig. 2.

Fig. 5 is a 11-year and 5-year moving average of the time series
f maize yields after standardization by subtracting the mean and
ividing the standard deviation at four locations in the southeast
SA. 22-year period (and 10-year period) oscillations cannot be

een in this figure. Fig. 5 shows a longer oscillations (more than 30
ears) in the early half of the time series. While CWT  has identified
hese longer oscillations, they are within the COI where the wavelet
ransformations are affected by the edge effect (Fig. 3).

.2. XWT  of crop yields and weather variables

Decadal variations of crop yields can be driven by various
eather factors, including daily maximum and minimum air tem-

eratures and precipitation. Since no decadal variations were
etected for maize yields, the XWT  analysis is only shown for
heat yields. The XWT  was firstly applied for wheat yields

nd mean temperatures or precipitation over the growing sea-
on (October–May) at four locations in the southeast USA, but
o relationships at decadal scales were detected (not shown).
he XWT  was then conducted for wheat yields and monthly
nd seasonal mean temperatures or precipitation during the
rowing season (October–May) at these four locations. The
ross-wavelet power spectrum indicated that the 10-year and 22-
ear variations of wheat yields were mostly related to winter
December–January–February, DJF) temperature and May  precip-
tation at all four locations, and the phase relationship for both
0-year and 22-year variations were in ‘in-phase’ (i.e., winter
emperature or May  precipitation simultaneously fluctuated with
heat yields in the same direction for 10-year and 22-year periods).

or example, Fig. 6 shows the XWT  between winter temperature,
ay  precipitation, and wheat yield in N-AL. The cross-wavelet

ower spectrums were high for both 10-year and 22-year varia-
ions and the phase relationship for were in ‘in-phase’, which means
ow (or high) May  precipitation or winter temperature is associated

ith low (or high) wheat yields, suggesting a strong causal relation-
hip. Similar relationships were detected for the locations at S-AL,
-GA, and N-FL (data not shown).

.3. XWT  of crop yields and large-scale climate indices
XWT  was conducted between wheat production and climate
ndices and between maize production and climate indices for the
ame four locations in the southeast USA. Again, since no decadal
ariations were detected for maize yields, only wheat data are
red  dotted line are original time series, 11-year moving average, and 5-year moving
average, respectively.

presented. Fig. 7 shows, in N-AL, the 22-year variability appears to
be correlated to all three indices (annual mean AMO  index, annual
mean PDO index, and winter NAO index) with the highest and sta-
tistically significant cross-wavelet power spectrum values for the
annual mean PDO index, followed by winter NAO index, and annual
mean AMO  index.

The 10-year variability appears to be mainly driven by the NAO
winter index but is also correlated with the annual mean AMO
index. Note, for the 22-year variability phase relationship, while
the PDO and wheat yields are in in-phase (for example, low (or
high) PDO is associated with low (or high) wheat yield), the NAO

and wheat yields are in opposite phase (for example, low (or high)
NAO is associated with high (or low) wheat yield), which sug-
gests that the PDO and NAO effect weaken each other. Similar XWT
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Fig. 6. Cross-wavelet power spectrum of wheat yields and (a) winter (DJF) tem-
perature, (b) May  precipitation in N-AL. The red color pixels represent highest
cross-wavelet power spectrum. The black contour (surrounding red and orange
areas) designates the 5% significance level against “red noise”. Inside the black cone
shape contour is the region without an edge effect. Outside the black cone contour
is  the region of cone of influence (COI) – which is due to the finite length of the time
series where the edge effects become important and distort the results. The rela-

ral variability in the time range of 50–70 years and 20–30 years,
Fig. 5. As in Fig. 4, but for maize yields.

atterns were also found for the other three locations at S-AL, S-GA,
nd N-FL (data not shown).

. Discussion

In this study, we have detected short-term (e.g., a few years)
nd decadal variations in simulated winter crop yields (e.g., wheat)
riven by climate reanalysis in the southeast USA. Furthermore, we

ound that there were short-term (seasonal to interannual) varia-
ions in simulated summer crop yields (e.g., maize) in the southeast
SA. These decadal variations of simulated winter crop yields were
ssociated with decadal variations in boreal winter season temper-
ture and spring (i.e., May) precipitation. This is because winter

emperature is important to vernalization of winter wheat and
pring precipitation determines soil water availability to wheat
rowth such as stem elongation, heading, and flowering during
pring season. In addition, the simulated winter wheat yields in
tive phase relationship is shown as arrows (with in-phase pointing right, anti-phase
pointing left, and temperature or precipitation leading wheat yields by 90 degree
pointing straight down)[For interpretation of the references to color in this figure
legend, the reader is referred to the web  version of this article].

the southeast USA showed strong correlations with decadal-time
scale climate indices, including annual mean AMO index, annual
mean PDO index, and the winter NAO index. There were no signifi-
cant decadal variations in simulated summer crop production. This
is because temperature and precipitation have no decadal climate
variation during the summer growing season.

These findings are significant given the fact that seasonal cli-
mate and crop yields forecasts often have low skill and therefore,
little value in crop management in many parts of the world (Ash
et al., 2007; Vizard and Anderson, 2009; Wang et al., 2009; McIntosh
et al., 2007; Mauget et al., 2009; Letson et al., 2009; Messina et al.,
1999), including the southeastern USA (Cabrera et al., 2007; Jones
et al., 2000; Stefanova et al., 2012; Tian et al., 2014). The knowl-
edge of teleconnections between decadal climate variability and
local seasonal climate variability could be potentially useful to
further refining seasonal forecasts to improve seasonal crop man-
agement. For example, knowing the phase of the AMO,  PDO, and
NAO will provide further information of the influence of season-
ally forecasted ENSO teleconnection on a winter crop like wheat
in the southeast USA. The AMO  and PDO have a broad tempo-
respectively. The NAO on the other hand has far broader tempo-
ral variability with periods ranging from a few years to decades
apart. These oscillations have shown some degrees of predictabil-
ity in current dynamic climate models (e.g., Johansson, 2007; Wen
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Fig. 7. Cross-wavelet power spectrum of wheat yields and (a) annual mean AMO,
(b) annual mean PDO, and (c) winter NAO for N-AL. The red color pixels represent
highest cross-wavelet power spectrum. The black contour (surrounding red and
orange areas) designates the 5% significance level against “red noise”. Inside the
black cone shape contour is the region without an edge effect. Outside the black
cone  contour is the region of cone of influence (COI) – which is due to the finite
length of the time series where the edge effects become important and distort the
r
r
d
fi

e
f
h
a
d
i
2
d
i
c
c

esults. The relative phase relationship is shown as arrows (with in-phase pointing
ight, anti-phase pointing left, and the climate index leading wheat yields by 90
egree pointing straight down)[For interpretation of the references to color in this
gure legend, the reader is referred to the web  version of this article].

t al., 2012; Yang et al., 2013). In addition, the inertia of their low
requency variations offer an opportunity to exploit their forcing on
igher frequency variability. Several decadal reforecasts conducted
s part of the IPCC AR5 have demonstrated that climate models can
erive skill from the persistence, for example, of the AMO  in the

nitial condition for a decade (Corti et al., 2012; Doblas-Reyes et al.,

011). From the application point of view, empirical models can be
eveloped using these observed large-scale climate information to

mprove seasonal crop management. Seasonal prediction of these
limate oscillations from dynamic climate models can be used or
ombined with empirical- or process-based crop models to assist
t Meteorology 204 (2015) 1–9

crop management. The effects of long-term climate patterns such
as the AMO, PDO, and NAO are not just limited to a particular region.
Besides the southeast USA, the importance of these long-term cli-
mate patterns for crop productions were also found in other regions
of the world (e.g., Atkinson et al., 2005; Gimeno et al., 2002; Persson
et al., 2012). Similar to ENSO impacts on crop yields at a global
scale (Iizumi et al., 2014), long-term climate patterns such as the
AMO, PDO, and NAO could also be considered when investigating
the climate impacts on global crop production.

This study provides quantitative information that is essential to
investigate the effects of climate change on crop production. For
example, since climate-driven simulated winter crop production
showed strong decadal variations in a region, the decadal variability
should be separated from climate change signals when investigat-
ing the agricultural effects from climate change.

Dynamically downscaled reanalysis was used to drive CSMs to
simulate crop production by keeping other factors constant, so
that the climate variability effects on crop production could be
separated. However, the reanalysis-driven crop simulations have
uncertainties from different sources such as the reanalysis data
and the CSM (Asseng et al., 2013; Cammarano et al., 2013). The
atmospheric reanalysis data (FLAReS1.0) used in this study is an
atmospheric model dependent product, which is influenced and
limited by the fidelity of the atmospheric model. Similarly the
CSM is a numerical, discretized representation of crop growth and
development which also has limitations (Asseng et al., 2013). Fur-
thermore, this study only considered one soil type and different
soil types might also impact on the soil-climate interactions and
consequently the yield-climate correlations.

5. Conclusion

A wavelet analysis revealed that there were strong decadal
variations for simulated winter crop yields but not for simulated
summer crop yields in the southeast USA. Simulated winter crop
yields were dominated by 10- and 22-years decadal oscillations,
which are associated with decadal variations in winter temperature
and May  precipitation. Simulated winter wheat yields were posi-
tively or negatively correlated with the AMO, PDO, and NAO winter
indices for decadal periods. No decadal variations were detected
for simulated summer crop production. This knowledge of decadal
variability could be potentially useful to refine seasonal forecasting
of crop management.
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