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Abstract: Rainfall is a critical input variable of statistical streamflow forecasting models at subseasonal to seasonal time scales. This study
presents a framework for evaluating the utility of a high-resolution experimental winter seasonal climate reforecasts for Florida (CLIFF) in
improving streamflow forecasts. The CLIFF forecasts were coproduced through a scientist–stakeholder group of the Florida Water and Climate
Alliance. The framework consists of a statistical streamflow generation model, four different sets of rainfall inputs, and distinct metrics for
evaluating the resulting streamflow forecasts. The four sets of rainfall inputs include rainfall climatology, observed rainfall, NOAA-based
seasonal rainfall forecasts, and CLIFF-based rainfall forecasts. Because NOAA ensemble precipitation forecasts were not available in this
study, NOAA-based categorical precipitation outlooks were postprocessed via a hidden Markov chain model to obtain the corresponding
NOAA-based seasonal rainfall forecasts. Streamflow forecasts based on rainfall climatology served as a reference. Different evaluation metrics,
including Spearman correlation, mean absolute percent error (MAPE), and rank probability skill score (RPSS), were employed to evaluate
model performance. The framework was demonstrated for streamflow forecasts for two rivers in the southwest of Florida, serving as a major
source of a regional water supply agency. A retrospective streamflow forecasting model was designed for the dry season [November, December,
January, and February (NDJF) months] for each of the 20 years from 2000 to 2019. Results revealed that CLIFF-based streamflow forecasts are
a promising alternative to NOAA-based forecasts. Deterministic streamflow forecasts based on CLIFF rainfall have a smaller mean absolute
percent error (MAPE) compared with the NOAA-based streamflow forecasts. Although NOAA-based probabilistic streamflow forecasts out-
performed CLIFF-based probabilistic streamflow forecasts for the winter forecasting periods of November, December, and January, the latter
forecasts performed better for the forecasting period of February. Thus, the two probabilistic forecasts are complementary. Although the results
are limited to the study area, it has general application for evaluating the utility of different rainfall forecasts in providing deterministic/
probabilistic streamflow forecasts. DOI: 10.1061/(ASCE)WR.1943-5452.0001571. © 2022 American Society of Civil Engineers.
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Introduction

Over the last 20 years, operational seasonal hydrologic forecasts of
rainfall and streamflow have gained increasing attention in the
research community and water practitioners (Gong et al. 2010;
Alemu et al. 2011; Lu et al. 2017; Sikder et al. 2016; Lopez and
Haines 2017). Much progress has been made to address issues such

as how to incorporate streamflow uncertainty into water resources
management and how to best interpret probabilistic outcomes for
decision-making (Zhao et al. 2011, 2012; Chen et al. 2016; Turner
et al. 2017), which are considered as major challenges in the use of
operational streamflow forecasts (Pagano et al. 2014; Wang et al.
2015, 2020). Operational hydrologic forecasting has found wide-
spread application because of several reasons: (1) improved skills
of seasonal and subseasonal climate/weather forecasting models
(Kirtman et al. 2014; Vitart et al. 2017), (2) availability of forecast
products in near-real-time (Kirtman et al. 2014; Bhardwaj et al.
2021), (3) advances in computational resources for both climate
and hydrologic modeling (Demargne et al. 2014; Maidment 2016),
and (4) the need to explore what-if scenarios to understand how a
water supply system performs under uncertain streamflow condi-
tions. (e.g., Wang et al. 2020).

In many cases, it is challenging to quantify the value of opera-
tional forecasts in terms of economic benefit (Chiew et al. 2003).
Instead, it can be evaluated in terms of the potential enhancement
of the system performance of a water supply system. For instance,
the application of operational forecasts could potentially lead to
enhanced system reliability, reduced water deficit, lower flooding
risk, and increased hydropower generation, among others. Case stud-
ies in the literature have shown the benefit of seasonal streamflow
forecasts in irrigation management (Chiew et al. 2003), drought
management for water supply (Golembesky et al. 2009), optimal
reservoir operation for different objectives (Alemu et al. 2011;
Block 2011; Wang and Liu 2013; Steinschneider and Brown 2012;
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Ashbolt and Perera 2018) and facility maintenance scheduling
(Wang et al. 2020). Insights from those studies suggest that the
skills of operational streamflow forecasts are critical in supporting
decision-making.

Efforts to improve operational forecasts can be summarized into
two categories: (1) improved hydrologic models, e.g., model struc-
ture (Siddique and Mejia 2017), model parameters (Vrugt et al.
2006), and model averaging techniques (Schepen and Wang 2015)
in simulating the hydrologic response; and (2) enhanced model in-
put, e.g., initial soil moisture conditions and rainfall forecasts
(Harpold et al. 2017; Oubeidillah et al. 2019). Putting hydrologic
modeling issues aside, the skill of rainfall forecasts often dictates
the skill of streamflow forecasts (Cuo et al. 2011), at least in
rainfall-dominated river systems (Pagano et al. 2014). The study
reported in this paper falls into the second category.

Due to improved forecasting skills from general circulation
models (GCMs) and regional climate models (RCMs), output from
those models have been employed to improve operational stream-
flow forecast. Using statistically downscaled output from GCMs,
Landman et al. (2001) developed real-time categorical streamflow
forecasts at the inlets of 12 dams of the Vaal and Upper Tugela
River catchments in South Africa. Block et al. (2009) integrated
GCMs, multiple RCMs, and numerous hydrologic models to
improve streamflow forecasting for the Jaguaribe Basin in north-
eastern Brazil. Sikder et al. (2016) used the rainfall output from
the North American multimodel ensemble (NMME) to develop
streamflow forecasts for two large river basins at multiple time
scales ranging from monthly to annual. Retrospective gridded rain-
fall from European Centre/Hamburg Model (ECHAM) version 4.5
has been used in different studies to develop streamflow forecasts
with a lead time of up to 6 months (Sinha and Sankarasubramanian
2013; Wang and Liu 2013; Wang et al. 2015). Additional treatment
of outputs from GCMs such as statistical downscaling required ow-
ing to their coarse spatial resolution before it is used in developing
ensemble streamflow forecasts. Such treatments may be avoided if
GCMs outputs are produced at a finer spatial resolution that could
be applied directly to developing streamflow forecasts.

The motivation of this study was to fine-tune seasonal stream-
flow forecasts for decision-making at Tampa Bay Water, a regional
water supply agency on the west coast in Florida. The existing
streamflow forecasts used by Tampa Bay Water utilize National
Oceanic and Atmospheric Administration (NOAA) rainfall fore-
casts (Wang et al. 2020). Promising alternatives to NOAA rainfall
forecasts would provide water practitioners with flexibility in
developing operational forecasts and potentially lead to improved
streamflow forecasts. This study is an outcome of a knowledge
coproducing research project through collaboration among climate
scientists and water practitioners under the Florida Water and
Climate Alliance (Misra et al. 2021). The sustained collaborative
effort among scientists and practitioners resulted in coproducing
a high-resolution experimental winter seasonal climate reforecasts
for Florida (CLIFF) at 10-km grid spacing (Bhardwaj et al. 2021).
The model was configured for the Florida region. For example,
CLIFF ensemble members are uniquely designed to sample uncer-
tainty in the lateral boundary conditions that forces the regional
model and samples the uncertainty in the parameterizations used
in the regional model. In essence, CLIFF attempts to best resolve
the noise in the forecast system from its 30 ensemble members.
This resolution of the noise at 10-km grid resolution is important
to avoid or mitigate erroneous confidence in wrong forecasts.

The CLIFF archive carries the output of climate variables
for 20 years of retrospective forecasts of the winter season,
i.e., November, December, January, and February (NDJF), from
2000 to 2019. Ensemble rainfall forecasts were tested by Tampa

Bay Water, a regional water supply agency, to develop ensemble
streamflow forecasts that will be used for seasonal water resources
allocation. This paper reports the evaluation of the CLIFF rainfall
forecasts in developing streamflow forecasts. The objectives of
this study were to (1) develop an evaluation framework assessing
streamflow forecasting scheme that uses different sets of rainfall
forecasts; and (2) evaluate and compare forecasting skills of the
CLIFF-based streamflow forecasts and streamflow forecasts based
on other types of rainfall inputs, which include rainfall climatology
and NOAA rainfall forecasts. The NOAA rainfall forecasts are
being currently used by Tampa Bay Water to develop decision-
making tools.

This paper is arranged as follows. Right after the “Introduction”
section, the “Data and Methodology” section briefly describes
the study area, the CLIFF model, the rainfall-driven streamflow
forecasting model, and the streamflow evaluation framework.
Evaluation criteria for both the deterministic forecasts and probabi-
listic forecasts are also introduced. In the “Results and Discussion”
section, evaluation results of streamflow forecasts for two surface
river flows are offered. Implications of the CLIFF-based stream-
flow forecasts for the dry season are also discussed. Finally,
concluding remarks are provided in the “Conclusions” section.

Data and Methodology

Study Area

Tampa BayWater, the largest wholesale water provider in the south-
east US, provides drinking water to its six member governments;
three cities including New Port Richey, St. Petersburg, and Tampa;
and three counties including Hillsborough, Pasco, and Pinellas. The
total service population is about 2.5 million residents. Over the last
20 years, the agency has built an integrated water supply system
that includes a surface water system, groundwater wells, and a sea-
water desalination plant. This has enabled the agency to shift from
being 100% reliant on groundwater to a mixture of sources with an
increasing reliance on surface waters (Wang et al. 2020). This shift
to having substantial surface water in the agency’s supply portfolio
has resulted in increased hydrologic risks. This necessitated the
development and implementation of seasonal forecasting tools.

Tampa Bay Water has water use permits from two surface rivers,
namely the Hillsborough and Alafia Rivers (Fig. 1). The normal dry
season extends from October through May. Streamflow at both
rivers has strong seasonality, with the highest monthly flows in the
summer rainy season and the lowest monthly flows typically in the
spring dry season. Seasonal multivariate linear regression models
(Asefa et al. 2014; Wang et al. 2020) are currently used to generate
monthly flow for the two primary surface water sources given rain-
fall forecast at three rainfall stations, including Saint Leo, Cypress
Creek, and Plant City (Fig. 1). Details of the streamflow simulation
model have been given by Asefa et al. (2014).

Coproduction of Seasonal Climate Reforecasts
for Florida

As part of a 3-year National Aeronautics and Space Administration
(NASA) stakeholder-scientist coproduction pilot project, custom-
ized high-resolution experimental winter seasonal climate refore-
casts for Florida were produced for the years 2000–2019 (Bhardwaj
et al. 2021). There are two major features of these winter seasonal
reforecasts. First, these are dynamically downscaled from an
atmospheric general circulation model (AGCM) run at the spectral
truncation of T62 (∼210 grid spacing) (Kanamitsu et al. 2002;
Misra et al. 2014). Second, the regional atmosphere model, namely
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the Regional Spectral Model (Juang and Kanamitsu 1994; Misra
et al. 2019), was forced with sea surface temperatures (SSTs) ob-
tained from one of the global models in the North American
NMME. The horizontal resolution of CLIFF was set at 10-km grid
spacing, and it provides 30-member ensemble forecasts for the win-
ter NDJF months. Details of the CLIFF setup and model configu-
rations of the AGCM and Regional Spectral Model (RSM) have
been given by Bhardwaj et al. (2021). CLIFF outputs were prepared
in the Network Common Data Form (NETCDF) format. Although
results reported in this study are based on retrospective forecasts
using CLIFF, the model is in place to produce operational dry-
season rainfall forecasts for Florida.

Evaluation Framework of Streamflow Forecasts

Besides CLIFF rainfall forecasts, there were three other candi-
dates of rainfall data considered in this study, including rainfall
climatology, NOAA forecasts, and observed rainfall. The rainfall

climatology for a particular month was obtained by averaging
monthly total rainfall received at each station over the years 1991–
2020. Retrospective NOAA rainfall forecasts were obtained from
the Climate Prediction Center. Categorical forecasts, such as above
normal, normal, and below-normal rainfall for the study region,
were obtained from the forecast archive available at the Climate
Prediction Center (Monthly and Seasonal Forecast Archive 2021).
Forecasts for the NDJF season issued on November 1 were used to
ensure a fair comparison with CLIFF.

Categorical rainfall forecasts were then converted to probabilis-
tic forecasts using a Hidden Markov chain model (Wang et al.
2020) with a predetermined occurrence of different states in the
winter months. Because NOAA ensemble precipitation forecasts
were not available in this study, NOAA-based categorical pre-
cipitation was postprocessed via a hidden Markov chain model
to derive the corresponding ensemble precipitation forecasts. If
NOAA ensemble precipitation forecasts were available or different

Fig. 1. Two watersheds in the study area and the three rainfall gauges that are used in generating operational streamflow forecasts. [Sources:
Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand),
NGCC, © OpenStreetMap contributors, and the GIS User Community.]

© ASCE 04022029-3 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2022, 148(6): 04022029 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
ui

 W
an

g 
on

 0
4/

06
/2

2.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



postprocessing techniques were applied, then the results reported
in this study and the conclusions drawn could be different. Rainfall
climatology was used as input to the streamflow, the output of
which represented the lower bound for the streamflow forecasting
skills. The observed rainfall was used as input to the streamflow
model, the output of which represented the upper bound of the
streamflow forecasting skills. These extreme theoretical conditions
binding the streamflow forecasting skills were included in this
study for comparison purposes.

Fig. 2 describes the framework used in this study to compare
streamflow forecasting skills based on different rainfall inputs.
For each winter season during the years 2000–2019, four different
sets of rainfall forecasts for the NDJF season were used to develop
streamflow forecasts. The streamflow forecasting model is a
monthly scale seasonal multilinear regression model, which has
been used to provide monthly operational forecasts for the study
area (Asefa et al. 2014; Wang et al. 2020). Asefa et al. (2014) has
provided a detailed description, the mathematical formulation of
these techniques, and their validation for the study area. For each
rainfall input, 1,000 ensemble members of stochastic monthly flow
forecasts were generated for each month of the NDJF season during
the years 2000–2019. The ensemble members of the streamflow
forecasts were then used to derive probabilistic forecasts. At the
same time, ensemble median values were treated as deterministic
forecasts.

Different evaluation metrics were applied in this study to evalu-
ate the performance of deterministic/probabilistic forecasts. For
deterministic forecasts, Spearman correlation between forecasts
and observed streamflow for each month in the winter season was
calculated to evaluate if the forecasts capture the interannual var-
iabilities. The mean absolute percent error (MAPE) was defined to
recognize the difference in magnitude of the streamflow values in
distinct months, as shown in Eqs. (1) and (2). For simplicity, an
index for different months in the winter season is skipped, and
the equations were applied to calculate the MAPE for each of
the forecasts

et;j ¼
jft;j − otj

ot
× 100% ð1Þ

ej ¼
1

n

Xt¼2019

t¼2000

et;j ð2Þ

where ft;j = ensemble mean of streamflow forecasts for year t
(t ¼ 2000; 2001; : : : ; 2019) from the jth rainfall input (j ¼ 1, 2,
3, or 4, representing the four different rainfall forecasts in Fig. 2);
ot = observed streamflow for year t; et;j = absolute percent error of

streamflow forecasts for year t (t ¼ 2000; 2001; : : : ; 2019) from
the jth rainfall input; n (n ¼ 20) = total number years; and ej =
mean absolute percent error of streamflow forecasts using the jth
rainfall input. Essentially, the MAPE metric normalizes the
deviation of the forecasts from the observed streamflow.

To evaluate probabilistic forecasts derived from the 1,000 en-
semble members at each month, rank probability skill (RPS) was
used to evaluate the tercile forecasts (Wilks 2006). Streamflow data
between 1991 and 2020 were used to calculate the 34th and 67th
percentile values. Streamflow within the range of 34th and 67th
percentiles was defined as normal; flow less than the 34th percen-
tile fell into the below-normal category, and the flow above the
67th percentile belonged to the above-normal flow category.
Ensemble forecasts were first used to calculate the probability of
each flow category, which were then used to calculate the RPS.
RPS essentially summarizes the sum of the square of errors in the
cumulative probabilities between a given categorical forecast and
observation.

To compare RPS between streamflow forecast derived from dif-
ferent rainfall inputs, the rank probability skill score (RPSS) was
used. In calculating the RPSS for different probabilistic forecasts,
streamflow derived from rainfall climatology was used as the base-
line forecasts. Both evaluation metrics, RPS and RPSS, are widely
used in the literature (Wilks 1995; Wang et al. 2013; Devineni et al.
2008; Yuan and Wood 2012). A positive RPSS indicates the can-
didate model outperforms the reference model, and the larger the
RPSS value is, the better the candidate model performs. Wang et al.
(2013) has given a detailed description of RPS and RPSS.

Results and Discussion

Fig. 3 shows the comparison of forecasted streamflow and obser-
vation at the Alafia River for the month of November during the
years 2000–2019. All four sets of streamflow forecasts generally
captured the interannual variabilities of November streamflow.
Fig. 3(a) shows the boxplots of observed rainfall driven streamflow
forecasts compared with observed streamflow. Observed stream-
flow was within the range of the 25th to the 75th percentiles of
the boxplots for most of the years. This is better than the stream-
flow forecasts based on rainfall climatology [Fig. 3(b)], CLIFF
[Fig. 3(c)], and NOAA operational forecasts [Fig. 3(d)], constitut-
ing the upper bound on forecast accuracy. For instance, only the
interquartile range of the observed rainfall-based streamflow fore-
casts contained observed streamflow for November 2014, which
was one of the high flow months.

A couple of observations can be made based on Fig. 3. First,
NOAA and CLIFF-based streamflow forecasts are generally better
than climatology. Second, CLIFF-based forecasts seem to be more
tightly bounded than NOAA-based forecasts, but show a tendency
to underpredict, November 2014 for example. This will be
discussed in subsequent sections.

Fig. 4 displays a comparison between observed streamflow and
different rainfall-based streamflow forecasts for February in the
years 2000–2019. The forecasting lead is 3 months because all
retrospective forecasts were issued at the beginning of November
each year. Hence, any streamflow forecasting errors in the prior
months could propagate to later months. Even with observed
rainfall in the NDJF months, there are times that observed values
were out of the interquartile range of the boxplots [Fig. 4(a)]. The
climatology-based forecasts [Fig. 4(b)] overforecast for a few
years, where observed flow was less than the 25th percentile of the
forecasted values. Similar observations can be seen for the NOAA-
based forecasts, where the magnitudes of the forecasted values

Rainfall 
climatology 

NOAA rainfall 
forecasts 

CLIFF rainfall 
forecasts 

Observed 
rainfall 

Monthly streamflow forecasting model 

Performance evaluation of 
streamflow forecasts 

Fig. 2. Evaluation framework used in this study to examine the per-
formance of streamflow forecasts based on different rainfall inputs.
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Fig. 3. Comparison between ensemble streamflow forecasts and observed data of the Alafia River for the month of November over the years of
the forecasting period of 2000–2019: (a) observed rainfall-based streamflow forecasts; (b) climatology rainfall-based forecasts; (c) CLIFF-based
streamflow forecasts; and (d) NOAA-based forecasts.

Fig. 4. Comparison between ensemble streamflow forecasts and observed data of the Alafia River for the month of February over the years of
the forecasting period of 2000–2019: (a) observed rainfall-based streamflow forecasts; (b) climatology rainfall-based forecasts; (c) CLIFF-based
streamflow forecasts; and (d) NOAA-based forecasts.
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were much higher than observed flow for a few years [Fig. 4(d)].
On the other hand, underforecasting of the CLIFF-based forecasts
[Fig. 4(c)] was observed for years including 2005–2007 and 2016.
Comparison between different streamflow forecasts and observed
flow at the Morris Bridge gauge station at the Hillsborough River
show edsimilar results (figures not shown, but evaluation criteria
are given in Table 1).

Median forecasts, corresponding to the median value of the
boxplots shown in the preceding figures, were used here as deter-
ministic forecasts for comparison purposes. Figs. 5 and 6 display
the comparison between median forecasts and observation for all
forecasting periods at the two river gauges. A few notable obser-
vations can be drawn based on Fig. 5. First, the observed rainfall-
based streamflow forecasts had the least deviation from observed

Table 1. Evaluation of winter-season NDJF streamflow forecasts based on different rainfall inputs

Streamflow forecasts Forecasting month

Correlation MAPE (%) RPSS

Alafia Hillsborough Alafia Hillsborough Alafia Hillsborough

Observed rainfall-based forecasts November 0.87 0.83 21.02 22.49 0.36 0.39
December 0.98 0.99 16.64 20.40 0.65 0.50
January 0.87 0.88 28.41 28.53 0.69 0.46
February 0.84 0.85 25.78 24.83 0.73 0.74

CLIFF-based forecasts November 0.66 0.45 25.36 31.62 0.44 0.33
December 0.64 0.67 28.19 38.16 0.48 0.39
January 0.54 0.46 37.18 39.07 0.53 0.42
February 0.62 0.59 44.44 40.88 0.38 0.51

NOAA-based forecasts November 0.73 0.52 21.50 33.46 0.64 0.50
December 0.70 0.66 31.71 49.08 0.79 0.62
January 0.67 0.63 55.49 60.46 0.74 0.64
February 0.71 0.79 64.39 62.67 −0.48 0.26

Climatology-based forecasts November 0.56 0.42 30.80 31.92 N/A N/A
December 0.30 0.32 43.16 51.58 N/A N/A
January 0.20 0.21 60.32 62.38 N/A N/A
February 0.41 0.55 65.02 74.06 N/A N/A

Note: Correlation and MAPE are used to evaluate the performance of deterministic forecasts by comparing them with the observed streamflow. RPSS is used
to evaluate the performance of tercile forecasts using the climatology-based forecasts as a reference model, the RPSS of which is hence not available (N/A).

Fig. 5. Comparison between the median of ensemble streamflow forecasts and observed data of the Alafia River for the 4 months of (a) November;
(b) December; (c) January; and (d) February over the years of the forecasting period of 2000–2019.
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streamflow. This was true for all the forecasting lead times rang-
ing from zero to 3 months for both river gauges. The benefit of
accurate rainfall forecasts can be clearly seen at times when
high flow occurred, such as November 2014 and December and
January 2002.

Second, the performance of the streamflow forecasts decayed as
the lead time of the forecast increased. This was noted from the
increase in the deviation between the forecasts and the observed
data in later months from the start of the forecast, e.g., errors in
February were larger compared with prior months. Overforecasting
for the NOAA-based forecasts in January and February for several
years can clearly be observed. For instance, when a low-flow con-
dition was observed in November 2009 at the Morris Bridge gauge
station, the median of NOAA-based forecasts was higher than the
observed flow. The gap between the two increased in December
2009 and was further enhanced in January and February of 2010.
This is due to error propagation of rainfall forecasts and streamflow
forecasts from the prior months.

Fig. 7 shows Spearman correlation between observed stream-
flow and different forecasts for Alafia River [Fig. 7(a)] and
Hillsborough River [Fig. 7(b)]. Correlation values are given in
Table 1. It was highest for the observed rainfall-based forecasts,
ranging between 0.82 and 0.95. It was lowest for the climatology-
based forecasts. NOAA-based forecasts had a higher correlation
with observed data than the correlation between CLIFF-based fore-
cast observations. This is probably due to the strong underforecast-
ing of large events for the CLIFF-based forecasts. There was also a
difference in the forecasts for the two river gauges. For both the
CLIFF-based and NOAA-based forecasts, correlation values were
higher for the Alafia River than for the Hillsborough River. This is
driven by the difference in the physical hydrologic process at the
two watersheds. The Hillsborough River watershed is more condi-
tionally connected and has a relatively larger watershed memory

than the Alafia River. Hence, streamflow at the Alafia River is more
dominated by rainfall amount in terms of runoff generation
mechanisms.

Fig. 8 compares the MAPE between different streamflow fore-
casts for both flow gauges, the values of which are given in Table 1.

Fig. 6. Comparison between the median of ensemble streamflow forecasts and observed data at the Morris Bridge gauge of the Hillsborough River for
the 4 months of (a) November; (b) December; (c); January; and (d) February over the years of the forecasting period of 2000–2019.

Fig. 7. Correlation between the median of ensemble forecasts and
observed streamflow for the 4 months of November, December,
January, and February over the years of the forecasting period of
2000–2019 at both the Alafia River and Hillsborough River.

© ASCE 04022029-7 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2022, 148(6): 04022029 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
ui

 W
an

g 
on

 0
4/

06
/2

2.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



The lower the MAPE value, the smaller the discrepancy between
forecasts and observed values. Consistent with what has been
revealed in Fig. 7, observed rainfall-based forecasts had the
lowest MAPE, whereas climatology-based forecasts had the larg-
est. Forecasting errors were lower in the first two forecasting
periods, i.e., November and December, compared with January

and February. This is consistent with what has been found previ-
ously in examining the boxplots. CLIFF-based forecasts, however,
have lower forecasting error compared with the NOAA-based fore-
casts. The difference in the MAPE values for the first forecasting
period, i.e., November, was smaller compared with later months.

To further evaluate different forecasts, all ensemble members
were used to derive probabilistic forecasts as described in the
“Methodology” section. Fig. 9 presents ensemble forecasts for the
NOAA-based and CLIFF-based method for the forecasting period
of February 2020 at the Hillsborough River. The histogram shows
the relative frequency of different flow intervals, and the filled
circle on the X-axis represents the observed value. The RPS for
the NOAA-based and CLIFF-based forecasts was 0.44 and 0.10,
respectively. The is primarily because the CLIFF-based forecast
had a tighter distribution around the observed value. The RPSS can
then be calculated using the climatology-based forecasts as the
reference model. Unlike the RPS, a higher RPSS indicates a better
forecasting skill. Given that retrospective forecasts were provided
for each month in the NDJF season for the years 2000–2019, there
were a total of 20 RPSS values for each forecasting period.

Boxplots of the RPSS values for the three different rainfall-
based forecasts at the Alafia River and Hillsborough River are
shown in Fig. 10. When the RPSS value is greater than zero,
it indicates the candidate model performs better than the refer-
ence model, which is climatology-based streamflow forecasts. The
median values of boxplots for all forecasting periods were above
zero except the NOAA-based forecasts for February at Alafia River.
As expected, the observed rainfall-based model performed the
best with the largest median values for nearly all the forecasting
periods. In addition, it had the smallest interquartile ranges, indi-
cating the least interannual variabilities in its forecasting perfor-
mance. The NOAA-based forecasts had greater RPSS than the
CLIFF-based forecasts for the first three forecasting periods,

Fig. 8. MAPE of ensemble forecasts for the 4 months of November,
December, January, and February over the years of the forecasting
period of 2000–2019 at both the Alafia River and Hillsborough River.

Fig. 9. NOAA-based and CLIFF-based streamflow forecasts for Morris Bridge gauge at the Hillsborough River for February 2020.

© ASCE 04022029-8 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2022, 148(6): 04022029 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
ui

 W
an

g 
on

 0
4/

06
/2

2.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



including November, December, and January, but excepting
February. The median of RPSS values for all the forecasting
periods are given in Table 1.

Accurate winter season streamflow forecasts, either deter-
ministic or ensemble forecasts, have implications for water resour-
ces management. The NOAA-based model is currently used to

facilitate decision-making at the seasonal time scale (Wang et al.
2020) and determine water shortage stages (Wang et al. 2019) to
trigger potential water shortage mitigation measures. This study
found that CLIFF-based forecasts are a promising candidate for
winter seasonal flow forecasting. In terms of deterministic fore-
casts, although CLIFF-based forecasts have a smaller correlation

Fig. 10. Boxplots of RPSS for different ensemble forecasts at winter months for (a) Alafia River; and (b) Morris Bridge gauge at the
Hillsborough River.
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with observed streamflow, they have smaller forecasting errors than
the NOAA-based forecasts. In terms of probabilistic forecasts, the
CLIFF-based forecasts have better RPSS than the NOAA-based
forecasts for the month of February.

There are a few sources of the difference between streamflow
forecasts based on the postprocessed NOAA categorical forecasts
and streamflow forecasts based on CLIFF ensemble forecasts. The
first is that CLIFF is a regional climate model that is configured and
calibrated for the Florida region. For example, CLIFF ensemble
members are uniquely designed to sample uncertainty in the lateral
boundary conditions and uncertainty in the model parameteriza-
tions. The second is that postprocessing of the NOAA categorical
forecasts might have enhanced the uncertainty of the ensemble pre-
cipitation, which further propagated to the streamflow forecasts.
Evaluation of the utility of these forecasts in the decision-making
processes of seasonal resources allocation is beyond the scope of
this study because it requires a systems model that these streamflow
forecasts feed into, which will be pursued in a separate study.

Conclusions

This study evaluated the potential use of rainfall forecasts from
high-resolution experimental winter seasonal climate reforecasts
that was coproduced through scientist-stakeholder group at Florida
Water and Climate Alliance (Florida Water and Climate Alliance
2021). Through sustained interaction of its members, a pilot study
was borne to produce customized and actionable climate forecasts,
e.g., seasonal climate forecast data sets (CLIFF), whose utility were
explored in this study. In this study, CLIFF rainfall forecasts were
used to assess if improvements in operational streamflow forecasts
could be achieved. The evaluation framework entailed using four
distinct rainfall data sets, a streamflow generation scheme, and
evaluation metrics for deterministic and probabilistic forecasts.

Four different sets of rainfall data were examined, including
rainfall climatology, observed data, NOAA-based rainfall forecasts,
and CLIFF rainfall forecasts. Because NOAA ensemble precipita-
tion forecasts were not available in this study, NOAA-based cat-
egorical precipitation was postprocessed to obtain NOAA-based
seasonal rainfall forecasts. Different evaluation metrics, including
Spearman correlation, mean absolute percent error, and rank prob-
ability skill score, were applied to evaluate the performance of
deterministic and probabilistic forecasts. The framework was ap-
plied on streamflow forecasts generated for the winter season,
i.e., NDJF months, at the two surface water supply sources for
Tampa Bay Water during the years 2000–2019. The NOAA-based
rainfall is currently used in the study area to develop operational
streamflow forecasts.

Results found that the performance of all retrospective fore-
casts decayed with forecasting period increases, whereas observed
rainfall-based streamflow forecasts had the best performance, and
the climatology-based had the lowest score. It was also found that
CLIFF-based streamflow forecasts are a promising alternative to
NOAA-based forecasts. The CLIFF-based streamflow forecasts,
however, seem to underforecast large events. Deterministic fore-
casts of CLIFF-based streamflow had a smaller MAPE compared
with the NOAA-based streamflow forecasts. Further study is
needed to evaluate the use of operational streamflow forecasts in
decision-making processes through systems-based models, which
is outside the scope of this study. Although the results are limited
to the study area, they have general application for evaluating the
utility of different rainfall forecasts in providing deterministic/
probabilistic streamflow forecasts and the value of coproducing
customized actionable data sets.
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